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Introduction

Prerequisites

Some knowledge of order theory is assumed, including the basics of
partial orders, total orders and well-orders, along with the theory of
countable ordinals up to ε0. I also assume some knowledge of
combinatorics, including the statement of Ramsey’s theorem for
k-partitions of N(2).
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Initial Definitions and Notation

Definition 1
A quasiordering (or a preordering) ≤ on a set X is a reflexive and
transitive relation on X . We call a set X equipped with such a
relation a quasiorder (or a preorder).

We will write a < b (and say ‘a is strictly less than b’) if a ≤ b and
b 6≤ a. We will also write a 6≶ b (and say ‘a and b are
incomparable’) if neither a ≤ b nor b ≤ a.
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Examples

Any partial order, total order or well-order is a quasiorder.
Various contexts with a notion of ‘embedding’ form quasiorders.
For example, we might take:

I (some set of) groups, with G ≤ H exactly when there is an
injective group homomorphism G → H,

I (some set of) topological spaces, with injective continuous
maps,

I (some set of) infinite graphs, with the subgraph relation, or
the graph minor relation.
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Well-foundedness

Definition 2
I Given a set X , a quasiorder ≤ on X is well-founded if every

subset A ⊆ X has a minimal element with respect to ≤. That
is, for each A ⊆ X there exists an a ∈ A such that for every
b ∈ A, b 6< a.

I Equivalently (given the Axiom of Dependent Choice, which I
will assume), the relation is well-founded if it contains no
countably-infinite descending chain x0 > x1 > x2 > ... in X .
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However, well-foundedness of given quasiorders need not be
preserved under lifting operations. For example, (N, |) is a
well-founded quasiorder, but the sequence

P2 > P3 > P5 > ...

where Pn := {p ≥ n : p prime} is an infinite descending sequence
in P(N).
So, when is the powerset of a quasiorder well-founded?
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Goodness

Take a quasiorder X and consider sequences ā : N→ X .

I A pair (ai , aj) is called good if i < j in N and ai ≤ aj in X .

I The whole sequence is called good if it contains a good pair.
Otherwise it is bad.

This allows us to define a stronger (as we shall see) notion than
well-foundedness for our quasiorders.

Definition 3
A well-quasiorder X is a quasiorder for which every sequence
ā : N→ X is good. (Henceforth we write ‘wqo’ for
‘well-quasiorder’.)
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Examples

I The natural numbers (N,≤) with the usual order are a wqo
— every well-order is wqo. The integers (Z,≤) are not wqo,
as the sequence of negative integers

0,−1,−2,−3, ...

is bad, and the naturals (N, |) under divisibility are not wqo,
as the sequence of primes

2, 3, 5, 7, 11, ...

is bad. (These are in essence the only types of bad sequence;
see Proposition 1).
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I if (X ,≤) is a wqo, then the finite product X k with
componentwise ordering is also wqo (See Proposition 4).

I If X is a finite set, the set X ∗ of finite strings of elements of
X ordered by a ≤ b if and only if a is a subsequence of b (for
example, X = {0, 1}, a = 011, b = 01001) is a wqo (this is
called Higman’s Lemma). This is a special case of Kruskal’s
Tree Theorem, which states that if Q is a wqo, then so is the
set T (Q) of finite trees labelled with elements of Q, under
‘homeomorphic embedding’.
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Characterising Well-quasiorders

Proposition 1

Let A be a set with quasiorder ≤. Then the following are
equivalent:

(i) A is a well-quasiordering.

(ii) A contains no infinite strictly-decreasing sequence, nor an
infinite sequence of pairwise-incomparable elements.

(iii) Every sequence ā : N→ A contains a non-decreasing
subsequence āu.



Well-quasiorders

Well-quasiorders

We will show (i) =⇒ (ii) =⇒ (iii) =⇒ (i).

I Let ā : N→ A be a sequence in A. By (i), ā is good, so it
contains a good pair ai ≤ aj . Then because of this pair, ā is
neither an strictly-decreasing sequence, nor a sequence of
pairwise-incomparable elements.

I Given a sequence ā : N→ A, partition the two-sets {i < j}
into three parts P1,P2,P3, given respectively by the
trichotomous conditions ai ≤ aj , ai > aj and ai 6≶ aj . Then
Ramsey’s theorem gives us a infinite monochromatic subset of
N.
But by (ii) this subset cannot be monochromatic in P2, nor in
P3, and so it must be monochromatic in P1. This is our
non-decreasing subsequence āu.
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I Let ā : N→ A be a sequence in A. By (iii), it contains a
non-decreasing subsequence āu. In particular, au(0) ≤ au(1),
and this is a good pair, so ā is a good sequence.
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The Powerset Condition

Proposition 2

Let X be a set with quasiorder ≤. Then X is a wqo if and only if
the lift P(X ) with the relation

A ≤ B ⇐⇒ ∀a ∈ A ∃b ∈ B : a ≤ b

is well-founded.
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In both directions we prove the contrapositive.

I Suppose X is not wqo, so we have a bad sequence ā : N→ X .
Define

Ai := {aj : j ≥ i}.

Then
A0 > A1 > A2 > ...

is a strictly-decreasing sequence in P(X ) — if Ai ≤ Aj for
some i < j , there is some k ≥ j > i such that ai ≤ ak ,
contradicting the fact that ā is bad.
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I Conversely, suppose P(X ) is not well-founded. Then we have
a strictly-decreasing chain of subsets

A0 > A1 > A2 > ...;

take for each i some ai ∈ Ai such that ai 6≤ b for all b ∈ Ai+1.
Then we claim the sequence (ai ) is bad.
Indeed, let i < j . Then since Aj ≤ Ai+1 there is some
c ∈ Ai+1 with aj ≤ b. Then since by construction ai 6≤ c, we
must have ai 6≤ aj .
Hence X is wqo.
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The Minimal Bad Sequence

Definition 4
Let X be a well-founded quasiorder which is not a wqo. A bad
sequence ā : N→ X is a minimal bad sequence (an MBS) if for
each n ∈ N, an is minimal from the set

{a ∈ X : there is a bad sequence whose first n terms are a0, ..., an−1, a}.

We would like to use this notion in some sense like a ‘minimal
counterexample’ in induction proofs. That is, we want to say that
every sequence which is ‘below’ an MBS must be a good sequence.
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The Minimal Bad Sequence Lemma

Lemma 3
Let X be a well-founded quasiorder which is not wqo, and let
ā : N→ X be an MBS. Then the subset

Y := {y ∈ X : y < an for some n ∈ N}

is wqo.
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Let b̄ : N→ X be an arbitrary bad sequence in X . Suppose for the
sake of contradiction that every element of b̄ is in Y ; that is,
suppose that for all i there is n such that bi < an. Take a pair
(i , n) with least possible n and consider the sequence

a0, a1, ..., an−1, bi , bi+1, bi+2, ...

— it cannot be bad, or else an is not minimal among bad
continuations of the initial segment (a0, a1, ..., an−1). Thus it
contains a good pair, and this must be of the form aj ≤ bk , since ā
and b̄ are both bad.
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But since bk ∈ Y , there is some l with bk < al =⇒ aj < al , and
by minimality of n we have j < n ≤ l .
So in fact aj < al is a good pair, contradicting badness of ā. Thus
b̄ was not in Y , and so every sequence in Y is good.
Hence Y is wqo.



Well-quasiorders

The Minimal Bad Sequence

Well-quasiorders from well-quasiorders

Proposition 4

Let A and B be wqo. Then the following are also wqo:

(i) the product A× B, given the ordering

(a, b) ≤ (a′, b′) ⇐⇒ a ≤ b ∧ a′ ≤ b′.

(ii) the set A(<ω) of finite subsets of A, given the ordering

B ≤ C ⇐⇒ ∃f : B → C injective and non-decreasing.
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We will show (i), and use this result to prove (ii).

(i) Let (ā, b̄) : N→ A× B be a sequence in A× B, with
projections ā : N→ A and b̄ : N→ B.
By Lemma 1, there is a non-decreasing subsequence āu of ā,
since A is a wqo. Since B is also a wqo, the corresponding
subsequence b̄u of b̄ has a good pair bu(i) ≤ bu(j). Then

(au(i), bu(i)) ≤ (au(j), bu(j)) and so (ā, b̄) is good.
So A× B is a wqo.
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(ii) Note that the relation ≤ on A(<ω) is reflexive (take
f = 1B : B → B) and transitive (since the composition of
non-decreasing functions is itself non-decreasing).
Moreover, it is well-founded: take a subset A ⊆ A(<ω), and
let n := min{|B| : B ∈ A}. Since B ≤ C =⇒ |B| ≤ |C |, a
minimal element among the finitely-many elements of size n is
minimal in A.
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Hence either A(<ω) is a wqo or we can take an MBS
B̄ : N→ A(<ω). As the empty set is the minimum element in
A(<ω), none of the Bi is empty; pick bi ∈ Bi for each i , and write
Ci := Bi \ {bi}.
Note that Ci < Bi (the inclusion is injective and non-decreasing).
Then by the MBS Lemma, the set

X := {Ci | i ∈ N} ⊆ A(<ω)

is wqo.
Now, we know by (i) that A×X is a wqo, and thus that the
sequence (b̄, C̄ ) is good. But a good pair (bi ,Ci ) ≤ (bj ,Cj) yields
a good pair Bi ≤ Bj in B̄, contradicting the fact that B̄ is a bad
sequence.
Hence A(<ω) is a wqo.
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Basic definitions and notation

One structure to which we can lift a quasiorder is the finite
(rooted) tree, which here we can consider as a generalisation of the
finite list.

Definition 5
A finite (unlabelled) tree is a finite partially-ordered set t, whose
elements are called vertices, such that

I t has a minimum vertex r = root(t), called the root of t, and

I for every b ∈ t, the set of vertices below b, {a : a < b} (the
under-set of b), is linearly-ordered.

In this way, we might say that trees ‘look like lists when looking
down’.
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Figure 1: A tree, in which a ≤ b if there is a path upwards from a to b.
Here the blue vertex has its under-set highlighted in red.
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We say ‘a is the parent of b’ if a = max{x : x < b} (which exists
because the set is a finite linear order), and we say that ‘b is a
child of a’ if a is the parent of b (see Figure 2). Note that a vertex
can have multiple children.

Figure 2: A vertex in blue: its children are in green, and its parent is in
red.
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For a vertex b ∈ t, the branch at b is the subset {a : a ≥ b} of t
with the induced partial ordering. This is itself a finite tree with
root b. In fact, this allows for an inductive definition of trees:

A tree is either a single vertex or a finite set of trees with
a single vertex below them all.
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A labelled tree (with labels in the quasiorder Q) is function
τ : t → Q, where t is an unlabelled tree. We say ‘a is a vertex of τ
with label q’ if a ∈ t, q ∈ Q and τ(a) = q.

3
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4
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17 3199 8

6

Figure 3: A tree labelled with elements from the quasiorder Q = N.
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Maps between trees

Definition 6
A homeomorphic embedding (henceforth a map) f : t → u between
finite trees is an injective function f satisfying, for all a, b ∈ t,

f (a ∧ b) = f (a) ∧ f (b),

where a ∧ b is the infimum of a and b — that is, the greatest
element in both their under-sets. If there is a map t → u write
t ≤ u; since the composition of maps is again a map, and the
identity function is a map, the resulting relation ≤ is a quasiorder.
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Figure 4: A tree homeomorphically embeds into another; vertices in the
range are coloured blue.
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Notice that a map f of unlabelled trees is an order-embedding:

a ≤ b ⇐⇒ a ∧ b = a

⇐⇒ f (a ∧ b) = f (a) since f is injective

⇐⇒ f (a) ∧ f (b) = f (a)

⇐⇒ f (a) ≤ f (b).

In particular, this means that if f is a surjective map, it is in fact
an order-isomorphism.
For labelled trees a non-decreasing homeomorphic embedding
(henceforth also called a map) f : τ → υ is the corresponding
notion: we require that f be a map, considered a a function t → u
(ignoring labels), and that for every vertex a of τ , τ(a) ≤ υ(f (a)).
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Kruskal’s Tree Theorem

We now have all the tools we need to prove the main theorem of
this essay.

Theorem 5
The set of finite trees labelled by elements of a well-quasiorder Q,
T (Q), is itself a well-quasiorder under homeomorphic embedding.
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T (Q) is a well-founded quasiorder

The identity function is a map, and the composition of two maps is
again a map: suppose f : τ → υ, g : υ → φ are maps. Then for
a, b ∈ τ ,

g ◦ f (a ∧ b) = g(f (a) ∧ f (b)) = g ◦ f (a) ∧ g ◦ f (b).

τ(a) ≤ υ(f (a)) ≤ φ(g(f (a))) =⇒ τ(a) ≤ φ(g ◦ f (a)).

Thus it remains to show that the relation is well-founded.
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Lemma 6
Let Q be wqo. Then the set of finite trees labelled by Q, T (Q), is
well-founded under homeomorphic embedding.

For a contradiction, suppose not. Then we have a
strictly-decreasing chain in T (Q)

τ̄ := (τ1, τ2, τ3, ...), τ1 > τ2 > τ3 > ...

Consider the underlying chain of unlabelled trees ti := dom(τi ).
Then since N is well-founded and ti ≥ tj =⇒ |ti | ≥ |tj |, we have a
subsequence of trees of equal size. But then, in this subsequence,
the maps ti → tj are surjective, and thus order-isomorphisms.
Hence we may restrict to the case where dom(τi ) = dom(τj) := t
for all i , j ∈ N.
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Let the vertices of t be a1, ..., an, and consider for i = 1, ..., n the
sequence

āi : N→ Q : k 7→ τk(ai )

— that is to say, āi is the sequence of labels at the vertex ai . Since
Q is wqo, by Lemma 1 there is a subsequence τ̄1 ⊆ τ̄ such that the
corresponding subsequence of ā1 is non-decreasing. Inductively, if
τ̄i ⊆ τ̄ is such that the corresponding subsequence of āj is
non-decreasing for all j ≤ i , by Lemma 1 there is a subsequence
τ̄i+1 ⊆ τ̄i such that the corresponding subsequence of āi+1 is also
non-decreasing.
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Then the subsequence τ̄n is non-decreasing at every vertex ai , and
so is non-decreasing as a sequence of labelled trees. But it is a
subsequence of the decreasing sequence τ̄ , which is a contradiction.
Hence in fact T (Q) is well-founded under homeomorphic
embedding.
Now that we know T (Q) is a well-founded quasiorder, we can
make use of the Minimal Bad Sequence Lemma.
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Proving Kruskal’s Tree Theorem

For a contradiction, suppose T (Q) is not wqo. Then since T (Q) is
a well-founded quasiorder we can take an MBS t̄ : N→ T (Q). As
Q is quasiordered, the sequence root(τ̄) : N→ Q has a
non-decreasing subsequence root(τ̄)u by Proposition 1 (iii).
Consider the corresponding sequence τ̄u in T (Q), and define for
each i the set Ai of branches at the children of the root of τu,i .
Define also

A :=
⋃
i∈N

Ai ;

then for all ρ ∈ A, ρ ∈ Ai for some i =⇒ ρ < τu,i . Thus by the
MBS Lemma A is wqo.
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Moreover, by Proposition 4 (ii) A(<ω) is also wqo. So we have a
good pair Ai ≤ Aj , which is to say a non-decreasing function

f : Ai → Aj .

Since ρ ≤ f (ρ) for all ρ ∈ Ai , we have maps hρ : ρ→ f (ρ). This
lets us define a map h : τu,i → τu,j as follows:

I h(root(τu,i )) := root(τu,j),

I h|ρ := hρ for each branch ρ ∈ Ai .

But this means τu,i ≤ τu,j , contradicting the fact that τ̄ is bad.
Hence T (Q) is wqo.
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Well-foundedness of ε0

It was shown by Gentzen in 1936 that the Peano axioms are proven
consistent by primitive recursive arithmetic along with the
statement

WO(ε0) := the ordinal ε0 is well-ordered.

In this way we know that (if PA is consistent) PA cannot prove
WO(ε0). Indeed, since PA interprets primitive recursive arithmetic,
such a proof would imply that PA proves its own consistency,
which is false by Gödel’s second incompleteness theorem.
We will show that Kruskal’s tree theorem implies WO(ε0), and so
is independent of Peano Arithmetic.
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Tree representation of ordinals less than ε0

Every ordinal less than ε0 may be represented uniquely in its
Cantor Normal Form:

α = ωα0 + ωα1 + ...+ ωαn ,

where α0 ≥ α1 ≥ ... ≥ αn are finitely-many ordinals, each strictly
less than α.
Recursively expanding out the αi in Cantor Normal form until
nothing remains but 0 and ωx yields a very tree-like structure:

ωω·2+1 + 3 = ωω
ω0

+ωω0
+ω0

+ ω0 + ω0 + ω0

and indeed this is the essence of how we will encode ordinals up to
ε0 as finite trees.
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If T is the set of finite trees, we define F : ε0 → T as follows:

I we define F (0) to be the singleton tree (call it 1T ), and

I given trees F (αi ) for 0 ≤ i ≤ n and
α = ωα0 + ωα1 + ...+ ωαn , F (α) is the tree with branches
F (α0), ...,F (αn) joined to a single root.

Figure 5: The tree corresponding to ωω·2+1 + 3.
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Facts about F : ε0 → T

I F is a bijection, and

I If t ≤ u as trees under homeomorphic embedding, then
F−1(t) ≤ F−1(u) as ordinals.
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The proof of these statements is somewhat involved, but is done by
recursively defining its inverse G : T → ε0 in terms of the ‘height’
of a tree (which is the maximum size of an under-set of a vertex).

I G (1T ) = 0, and

I if ht(t) = k > 0, let S := {s0, ..., sn} be the set of the
branches at the children of the root. Order them so that

G (s0) ≥ G (s1) ≥ ... ≥ G (sn);

note that G is already defined on the si since they each have
height at most k − 1. Then set

G (t) = ωG(s0) + ...+ ωG(sn).
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Kruskal’s Tree Theorem proves WO(ε0)

Take an arbitrary sequence of ordinals below ε0

ᾱ = (α0, α1, α2, ...).

By the bijection G : T → ε0, for each of these ordinals there is a
unique tree ti with G (ti ) = αi , giving a corresponding sequence
t̄ = (t0, t1, t2, ...). But then by Kruskal’s tree theorem, there is a
good pair ti ≤ tj , which yields a pair αi ≤ αj . Hence ᾱ is not a
strictly-decreasing sequence. So ε0 is well-founded.

Corollary 7

Kruskal’s theorem is not provable in PA.
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